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a b s t r a c t

The fluid dynamic equations are discretized by a high-order spectral volume (SV) method
on unstructured tetrahedral grids. We solve the steady state equations by advancing in
time using a backward Euler (BE) scheme. To avoid the inversion of a large matrix we
approximate BE by an implicit lower–upper symmetric Gauss–Seidel (LU-SGS) algorithm.
The implicit method addresses the stiffness in the discrete Navier–Stokes equations asso-
ciated with stretched meshes. The LU-SGS algorithm is then used as a smoother for a p-
multigrid approach. A Von Neumann stability analysis is applied to the two-dimensional
linear advection equation to determine its damping properties. The implicit LU-SGS
scheme is used to solve the two-dimensional (2D) compressible laminar Navier–Stokes
equations. We compute the solution of a laminar external flow over a cylinder and around
an airfoil at low Mach number. We compare the convergence rates with explicit Runge–
Kutta (E-RK) schemes employed as a smoother. The effects of the cell aspect ratio and
the low Mach number on the convergence are investigated. With the p-multigrid method
and the implicit smoother the computational time can be reduced by a factor of up to 5–10
compared with a well tuned E-RK scheme.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Spatially high-order accurate numerical schemes are being developed for use in a variety of flow problems. In Computa-
tional Fluid Dynamics (CFD), they are being used for Direct Numerical Simulation (DNS), Large Eddy Simulation (LES), Com-
putational Aeroacoustics (CAA), turbulent combustion etc. where the accurate resolution of small scales is required. In
addition, since CFD is increasingly used as an industrial design and analysis tool, it requires unstructured grids for efficient
meshing. High-order accuracy must therefore be achieved on unstructured grids. Discontinuous Galerkin (DG) schemes [1–
5], Residual Distribution (RDS) [6] and the more recently developed Spectral Volume (SV) [7–15] and Spectral Difference (SD)
[17–19] schemes are especially suited for these purposes.

However, when high-order schemes are combined with classical solution methods, such as explicit Runge–Kutta (E-RK)
solvers, they suffer from a restrictive CFL condition and hence a relatively slow convergence rate. In addition to this, the sol-
ver must also be able to deal with the geometrical stiffness imposed by the Navier–Stokes grids where high-aspect ratios
. All rights reserved.
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occur near walls. In the case of compressible solvers there is an additional stiffness when solving for low speed flows caused
by the disparate eigenvalues of the system.

High-order schemes possess less numerical dissipation than the lower-order ones. Consequently, it takes an excessive
amount of CPU-time to reach a steady-state solution with explicit solvers. Therefore, efficient solvers are needed to fully ful-
fill the potential of high-order methods. Implicit time-integration schemes can be used to deal with these problems. These
schemes can advance the solution with significantly larger time-steps compared to explicit methods. However, they may be
more expensive than explicit schemes if the algebraic solver employed is not efficient. Recently, there has been some re-
search on implicit Runge–Kutta (I-RK) schemes [20,21]. In Bijl et al. [20], I-RK solvers were investigated in combination with
a standard cell-centered finite volume scheme with artificial dissipation added for stability. It was observed that significant
potential improvements in the temporal efficiency of implicit schemes could be achieved from algebraic solver develop-
ments. In [21] the convergence of an E-RK scheme with h-multigrid was accelerated by preconditioning with a fully implicit
operator and the resulting RK/Implicit Residual scheme was used as a smoother for an h-multigrid algorithm. It was dem-
onstrated that the implicit preconditioner reduced the computational time of a well tuned E-RK scheme by a factor between
4 and 10. Both studies [20,21], concluded that solver improvements can be more dramatic than improvements in integration
techniques.

Another indispensable tool for efficiency is the multigrid algorithm. In the traditional h-multigrid approach, efficiency is
achieved by switching to coarser spatial grids. In a p-multigrid algorithm, a high-order solution representation is transferred
to a lower-order one and the multigrid algorithm uses iterations on sequences of different solution representations instead
of different grids. Essential for efficiency is that the solver is a good smoother of high-frequency error components and this
should also hold for high-aspect ratio grids.

In the present study we combine a SV discretization in space and an implicit lower–upper symmetric Gauss–Seidel (LU-
SGS) in (pseudo) time. This is accelerated by a full p-multigrid strategy. The LU scheme was started by Jameson and Turkel
[22] and later reformulated to use symmetric Gauss–Seidel by Jameson and Yoon in the context of second-order central
schemes [23]. It was recently rediscovered by Sun et al. [24] and adapted for use with SD schemes. In Parsani et al. [27]
it was coupled with the SV scheme and a full p-multigrid algorithm. Here, the LU-SGS algorithm with the backward Euler
method is evaluated both with analysis and computation. The damping properties of the implicit method are evaluated with
a Von Neumann stability analysis for a model 2D linear advection equation. In [25,26] this analysis was applied to implicit
schemes on Cartesian grids for classical upwind and central schemes. In the present work the analysis is on triangular grids
defined by a generating pattern, and for high-order SV schemes.

The implicit LU-SGS scheme is used to solve the two-dimensional steady laminar flows over a cylinder and a NACA0012
airfoil at low Mach number. For the two cases the order of the SV scheme is restricted to 2 because of the curved boundaries.
Currently a first-order interpolation is used for the boundary shape. High-order schemes, would require a more accurate
interpolation, especially on the relatively coarse grids that are being used in combination with high-order schemes [13].

The convergence behavior and the computational effort of the implicit LU-SGS algorithm is compared with that of a fam-
ily of optimized E-RK smoothers used in Van den Abeele et al. [14]. The influence of the mesh aspect ratio and the low Mach
number is investigated and the solutions are compared with experimental and numerical results found in the literature. For
the NACA0012 airfoil test case the convergence behavior of the LU-SGS solver is compared with that of RK/Implicit Residual
scheme used in [21]. The latter code is second-order accurate in space and uses a finite volume approach with quadrilateral
cells on structured grids.

The remainder of this article is organized as follows. A brief summary of the SV method is given in section 2. In Section 3,
the p-multigrid algorithm is described with the definition of a general restriction operator [27]. In Section 4, the explicit Run-
ge–Kutta schemes (E-RK) are described. In Section 5, the implicit LU-SGS with backward Euler (BE) scheme is discussed. A
Von Neumann stability analysis for the LU-SGS with backward Euler method and for a general SV schemes on triangular grids
is described in Section 6. Section 7 shows the stability analysis’ results for the second-order SV scheme. Section 8 deals with
the numerical test cases, before finally drawing conclusions in Section 9.
2. Spectral volume method

The spectral volume (SV) method is used to solve conservation laws (1)
@W
@t
þr � F Wð Þ ¼ 0; ð1Þ
where W is the state vector of conservative variables and FðWÞ is the flux density tensor.
The computational domain V is divided in NSV cells Vi, called spectral volumes, with volume jVij. Each SV is further sub-

divided into control volumes (CV) Vi;j. Integrating Eq. (1) over such a CV and applying the Gauss theorem gives
@

@t
Wi;j V i;j

�� ��� �
¼ �

Z
@Vi;j

F � ds ¼ Ri;j; ð2Þ
where jVi;jj is the volume of Vi;j;Ri;j is the residual corresponding to Vi;j and Wi;j is the CV average defined by
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Wi;j �
1

Vi;j

�� �� Z
Vi;j

WdV : ð3Þ
On a spectral volume Vi, the SV polynomial approximation of the solution is defined as
WVi
� wVi

�
XNCV p;dð Þ

j¼1

Wi;jLi;j: ð4Þ
In Eq. (4), NCV ðp; dÞ is the number of CVs in a SV, which depends on the desired degree of the polynomial approximation p
and the number of spatial dimensions d. The polynomials Li;j associated to the CVs Vi;j are defined by
1
Vi;j

�� �� Z
Vi;j

Li;mdV ¼ djm; ð5Þ
where djm is the Kronecker delta function. With the polynomial approximation wVi
, the flux integral in Eq. (2) can be approx-

imated to order pþ 1, using Gauss quadrature. On the boundary between two SVs however, there are two available values
for the flux F , one from within each SV. Thus, on these boundaries a suitable numerical Riemann flux F, for instance the
Rusanov flux [28] or the Roe flux [29], must be used. A more elaborate overview of the SV method can be found in
[7–15]. In this study the computation of the inviscid fluxes follows the classical approach described in [7–12], while the com-
putation of the viscous fluxes is based on the local DG idea [5]. Fig. 1 shows three 2D SV partitions that correspond to, from
left to right, a second (SV2), a third (SV3) and a fourth-order (SV4) accurate SV scheme. The SV2 partition has three CVs and is
uniquely defined. A SV3 contains six CVs and the partition has two degrees of freedom, namely a3 ¼ jABj

jAEj and b3 ¼ jACj
jADj. The SV4

partition consists of ten CVs and has four degrees of freedom. These are a4 ¼ jABj
jAGj ; b4 ¼ jACj

jAFj ; c4 ¼
jEFj
jAFj and d4 ¼ jADj

jAFj. The accuracy
and stability properties strongly depend on the choice of these parameters and their effects are analyzed in [15].
3. p-Multigrid algorithm

The main idea of multigrid is based on the observation that error-smoothing operators are generally efficient in eliminat-
ing high-frequency errors, but less adequate for the low-frequency errors. The multigrid strategy is to switch to a coarser
representation of the solution, where the low-frequency errors of the fine representation occur as high-frequency modes,
which can thus be efficiently damped out. In the traditional h-multigrid approach, this is done by switching to a coarser spa-
tial grid. With a p-multigrid algorithm, a high-order solution representation is transferred to a lower-order one.

A two-level Full Approximation Scheme algorithm (FAS), as proposed by Brandt [16], can be summarized in the following
way. To solve a fine level problem Rf ðUf Þ ¼ 0, perform the following operations:

� Perform m1 smoothing sweeps on the fine level: Wf  ðGf Þm1 Wf .
� Transfer the state and the residual to the coarse level: Wc

0  eIc
f Wf ; fc  RcðWf Þ � RcðWc

0Þ ¼ Ic
f Rf ðWf Þ � RcðWc

0Þ.
� Solve the coarse level problem: RcðWcÞ ¼ fc .
� Prolongate the coarse level error and correct the fine level state: Wf  Wf þ If

cðWc �Wc
0Þ.

� Perform m2 smoothing sweeps on the fine level: Wf  ðGf Þm2 Wf .

In this algorithm, Gf represents an arbitrary smoothing operator on the fine level and in this work it is the implicit LU-SGS
algorithm coupled with the BE scheme. fc is the so-called forcing function. The coarse level problem can again be solved
using a FAS algorithm, and so on. In this way, one arrives at a V-cycle. A further increase in efficiency can be achieved by
initializing the solution on coarser levels (Full Multigrid Algorithm). In this way, a better initial solution is provided for
the fine levels, which will also improve the robustness of the method. In the present paper, the switch to a finer level is made
when the L2 norm of the coarse level residuals is smaller than a factor gswitch times the L2 norm of the fine level residual and
gswitch is set to 0.001.
Fig. 1. Spectral volume partitions.
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The p-multigrid algorithm for a SV method, employed here, is largely based on the algorithm used by Van den Abeele et al.
[14] where the prolongation ðIf

cÞ and the state restriction ðeIc
f Þ operators, with omission of the SV index i, are defined as follow:

� Prolongation operator: the coarse level polynomials Lc
j can be written as a function of the fine level polynomials Lf

m:
Lc
j ¼

XNf

m¼1

ajmLf
m j ¼ 1; . . . ;Nc; ð6Þ

where Nc and Nf are the number of CVs within a SV on the coarse and fine levels. By equating the fine level solution to the
coarse level solution, the following expression for If

c is found: ðIf
cÞmj � ajm.

� State restriction operator: this operator can also be defined by projecting the fine level solution onto the coarse level poly-
nomial basis. This results in the following definition for eIc

f : ð~Ic
f Þmj ¼ ðP

�1QÞmj. The matrices P and Q are defined by
Table 1
Coeffici

Sche

opt R

opt R

opt R
Pjm ¼
Z

V
Lc

j Lc
mdV j;m ¼ 1; . . . ;Nc; ð7Þ

Q jm ¼
Z

V
Lc

j Lf
mdV j ¼ 1; . . . ;Nc m ¼ 1; . . . ;Nf : ð8Þ
The residual restriction operator used in this paper is more general than the one that was used in Van den Abeele et al.
[14], and is valid for any 2D or 3D cell, [27]. It is based on the idea that the residuals (after dividing them by the CV volume,
just like the solution) are also CV-averaged quantities. Therefore, the residual restriction operator is defined as:
Ic
f

� �
ij
� Vc

j
eIc

f

� �
jk

1

Vf
k

: ð9Þ
4. Explicit Runge–Kutta schemes

In the present work, the results obtained with the implicit LU-SGS are compared with those obtained with the E-RK smoo-
thers used in Van den Abeele et al. [14]. Explicit NRK-stage (E-RK) schemes of the following form are employed:
W0
i;j ¼Wn

i;j;

Wm
i;j ¼ C1

mW0
i;j þ C2

mWm�1
i;j þ C3

m
Dt
Vi;j

�� ��Rm�1
i;j 1 6 m 6 NRK ;

Wnþ1
i;j ¼WNRK

i;j :
where the coefficients C1
m;C

2
m;C

3
m are listed in Table 1.

5. Implicit LU-SGS algorithm

Consider the semi-discretization of a system of conservation equations:
@W
@t
� R WðtÞð Þ ¼ 0; ð10Þ
where Rð�Þ is a vector operator whose components are spatial difference operators representing a discrete approximation for
r � FðWÞ in Eq. (1). Approximate the temporal derivative with the backward Euler (BE) algorithm
Wnþ1 �Wn

Dt
� R Wnþ1

� �
� R Wnð Þ

h i
¼ R Wnð Þ; ð11Þ
where Dt is the time step and the superscripts n and nþ 1 denote time levels. Assume that the computational domain is sub-
divided into cells. Apply Eq. (11) to a single cell denoted by the subscript c (for the SV method c corresponds to one spectral
volume),
ents of the different E-RK schemes. Index m takes the values 1; . . . ;NRK .

me C1
m C2

m C3
1 C3

2 C3
3 C3

4 C3
5

K2 1 0 1
4

1 – – –

K3 1 0 1
5

1
2

1 – –

K5 1 ðif m ¼ 1Þ 0 ðif m ¼ 1Þ 85
1300

1
10

9
50

1
4

132
300

1� C3
mðif m – 1Þ C3

m ðif m – 1Þ
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Wnþ1
c �Wn

c

Dt
� R Wnþ1

c

� �
� R Wn

c

� �h i
¼ R Wn

c

� �
: ð12Þ
Let DWc ¼Wnþ1
c �Wn

c . Linearizing the residual using the Taylor expansion about Wn
c gives
RcðWnþ1Þ � Rc Wnð Þ � @Rc

@Wc
DWc þ

X
nb–c

@Rc

@Wnb
DWnb; ð13Þ
where nb indicates all the neighboring cells contributing to the residual of cell c. Therefore, the fully linearized equations for
(12) can be written as
I
Dt
� @Rc

@Wc

� �
DWc �

X
nb–c

@Rc

@Wnb
DWnb ¼ Rc Wnð Þ; ð14Þ
where I is the identity matrix. However, Eq. (14) requires too much memory to store the LHS implicit Jacobian matrices.
Therefore, the most recent solution for the nb cells is used [24],
I
Dt
� @Rc

@Wc

� �
DWðkþ1Þ

c ¼ Rc bfWn� �
þ
X

nb–c

@Rc

@bfWnb
DWð�Þ

nb ; ð15Þ
with superscript * denoting the most recent solution when doing forward and backward sweeps. Superscript kþ 1 refers to
the actual SGS sweep, i.e. DWðkþ1Þ

c ¼Wnþ1;ðkþ1Þ
c �Wn

c .
In [21], Eq. (15) is solved with a first-order upwind scheme with the Jacobians calculated each time step and not stored.

However, this may not be an efficient solution because the computation of the @Rc
@Wnb

for high-order method is time-consuming.
Hence, to avoid the computation and the storage of the off-diagonal block matrices, expression (15) is further manipulated as
follows [24]:
Rc Wnð Þ þ
X
nb–c

@Rc

@Wnb
DWð�Þ

nb � Rc Wð�Þ
c ; Wð�Þ

nb

n o� �
� @Rc

@Wc
DWð�Þ

c ¼ Rc Wð�Þ
� �

� @Rc

@Wc
DWð�Þ

c : ð16Þ
Let gDWðkþ1Þ
c � DWðkþ1Þ

c � DWð�Þ
c ¼Wnþ1;ðkþ1Þ

c �Wnþ1;ð�Þ
c . Consequently, combining Eqs. (16) and (15) the final Eq. (17)
I
Dt
� @Rc

@Wc

� �gDWðkþ1Þ
c ¼ Rc Wð�Þ

� �
� DWð�Þ

c

Dt
: ð17Þ
The linear system (17) is solved with multiple cell-wise symmetric forward and backward sweeps with a prescribed tol-
erance on the change gDWðkþ1Þ

c and/or a maximum number of symmetric forward and backward sweeps. This implicit solver is
denoted as ‘LU-SGS + BE’ in the remainder of this paper, where BE stands for backward Euler scheme. Note that solving
Eq. (17) to machine zero implies that Eq. (12) is satisfied, i.e. the nonlinear system of equations is solved exactly. Moreover,
if Eq. (12) is satisfied and the CFL number is smaller or equal to one, than the implicit LU-SGS is actually a physical time-
advancing scheme.

The initial guess for Wnþ1
c is Wn

c . In the present work, the L2 norm of the solution variation or RHS of Eq. (17) are monitored
for convergence. For steady state problems, it is not necessary to drive the RHS of Eq. (17) to machine zero, but it is more
efficient to limit the maximum number of SGS sweeps to damp high-frequency error components and/or set a threshold
for some norm of the change gDWðkþ1Þ

c . More details about the values of the parameters used to solve the system (17) are gi-
ven in Section 8.

The term DWð�Þ
c in the RHS of Eq. (17) introduces an under-relaxation effect because it is influenced by the solution com-

puted several sweeps before, [30]. Therefore, neglecting DWð�Þ
c may accelerate the convergence. However, the aim of the

present paper is the analysis of the damping properties of the original implicit LU-SGS algorithm proposed in Sun et al.
[24] and unless otherwise stated, the results of the Sections 6 and 8 refer to the original algorithm where the term
DWð�Þ

c =Dt, in the RHS of Eq. (17) is taking into account. Notice that the present approach requires less memory than fully
implicit methods since only the block matrices on the diagonal of the system matrix are stored.

6. Von Neumann stability analysis

The objective of this section is to evaluate the LU-SGS + BE scheme as a smoother for a multigrid method using the Von
Neumann stability analysis. In [25,26] this analysis was applied to implicit schemes on Cartesian grids for classical upwind
and central scheme. We present the analysis on triangular grids, defined by a generating pattern, and for a general SV
schemes. The Von Neumann stability analysis is applied to the 2D linear advection equation on a domain with periodic
boundary conditions, [15]:
@v
@t
þ ax

@v
@x
þ ay

@v
@y
¼ 0; ð18Þ

a ¼ axay
	 
T ¼ a cos w sin w½ �T ¼ a1a: ð19Þ
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The vector a is the wave propagation velocity with Cartesian components ax and ay, or amplitude a and the direction given
by the angle w. The initial solution is a harmonic plane wave, with wave number k and orientation defined by the angle h:
v x; y; t0ð Þ ¼ v x; y;0ð Þ ¼ eIk x cos hþy sin hð Þ; ð20Þ
where I ¼
ffiffiffiffiffiffiffi
�1
p

. A ðpþ 1Þth-order accurate SV method is applied to (18), on a mesh whose generating pattern is shown in
Fig. 2. This generating pattern consists of two triangular SVs (SV1 and SV2) which are periodically repeated to form the real
mesh. The generating pattern is completely defined by the vectors B1 ¼ ½B1x B1y�T and B2 ¼ ½B2x B2y�T and their non-dimen-
sional form is obtained by scaling them with the length of B1, denoted by DB : B1 � DBB01 and B2 � DBB02. On the boundary
between two SVs, the following Riemann flux is used:
FR vL; vR
� �

� 1n ¼
a � 1n vL þ vR

� �
2

�u
a � 1nj j vR � vL

� �
2

; ð21Þ
where vL is the solution of the left cell on the face and vR the one of the right cell on the face. The normal to the face 1n points
into the right cell. u is an upwinding parameter, where u ¼ 1 results in a simple upwind flux and u ¼ 0 gives a central flux.
After application of the SV method to (18), the following equations is obtained:
DB2
X2NCV

l¼1

Q m;l
d�v i;j;l

dt
þ aDB

X2NCV

l¼1

A0
m;l �v i;j;l þ aDB

X2NCV

l¼1

A�1
m;l �v i�1;j;l þ aDB

X2NCV

l¼1

Aþ1
m;l �v iþ1;j;l þ aDB

X2NCV

l¼1

C�1
m;l �v i;j�1;l

þ aDB
X2NCV

l¼1

Cþ1
m;l �v i;jþ1;l ¼ 0; ð22Þ
where NCV ¼ ðpþ 1Þðpþ 2Þ=2 is the number of CVs in each SV. The index m takes the values 1; . . . ;2NCV . Indices i and j are the
generating pattern indices. The variables �v i;j;l for l ¼ 1; . . . ;NCV are the CV-averaged values in the first SV of the generating
pattern (marked SV1 in Fig. 2), while the variables for l ¼ NCV þ 1; . . . ;2NCV correspond to the CV-averaged values of the sec-
ond SV (marked SV2). The matrices Qm;l; A0

m;l; A�1
m;l; Aþ1

m;l; C�1
m;l and Cþ1

m;l are a function of the wave propagation direction w and
their definitions are included in the Appendix of Van den Abeele et al. [15]. The factor DB is used to make these matrices and
V 0 dimensionless. DB2 is the area of the triangles divided by the dimensionless volume V 0 of the SV which is given by
V 0 ¼ jB1 	 B2j=ð2DB2Þ.

Approximating the time derivative in Eq. (22) with a backward Euler scheme Eq. (23) is obtained,
�vnþ1
i;j � �vn

i;j þ rM0 �vnþ1
i;j þ rM�1 �vnþ1

i�1;j þ rMþ1 �vnþ1
iþ1;j þ rN�1 �vnþ1

i;j�1 þ rNþ1 �vnþ1
i;jþ1 ¼ 0; ð23Þ
where r ¼ aDt
DB ; vi;j and n represent respectively, the CFL number, the variables of the generating pattern and the time iter-

ation index. The matrices M0; M�1; Mþ1; N�1 and Nþ1 are computed multiplying the matrices A0; A�1; Aþ1; C�1 and Cþ1

with the matrix ðV 0Q Þ�1.
The linear system (23) may also be written in a more compact form, i.e.
E�vnþ1 ¼ �vn; ð24Þ
where the matrix E is obtained by assembling the matrices M0; M�1; Mþ1; N�1 and Nþ1. When the spatial Fourier wave
�vn
i;j;m ¼ ~vn

meI k iB1xþjB2xð Þ cos hþ iB1yþjB2yð Þ sin hð Þ½ �; ð25Þ
m ¼ 1; . . . ;2NCV , is inserted into (23), the following linear system of equations is obtained:
~vnþ1 � ~vn þ rM0 ~vnþ1 þ rM�1 ~vnþ1e�IK B01x cos hþB01y sin hð Þ þ rMþ1 ~vnþ1eþIK B01x cos hþB01y sin hð Þ

þ rN�1 ~vnþ1e�IK B02x cos hþB02y sin hð Þ þ rNþ1 ~vnþ1eþIK B02x cos hþB02y sin hð Þ ¼ 0; ð26Þ
where K ¼ kDB is the non-dimensional wave number. An expression for the amplification matrix GD, defined by ~vnþ1 ¼ GD ~vn,
can be obtained from Eq. (26):
Fig. 2. Generating pattern for the mesh.
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GD ¼ IþrM0þrM�1e�IK B01x coshþB01y sinhð Þ þrMþ1eþIK B01x coshþB01y sinhð Þ þrN�1e�IK B02x coshþB02y sinhð Þ þrNþ1eþIK B02x coshþB02y sinhð Þ
h i�1

:

ð27Þ
The matrix GD represents the amplification matrix of the direct inversion method which is marked as ‘direct + BE’ in the
remainder of this paper.

The previous analysis may be applied to the LU-SGS + BE scheme to get its amplification matrix. The present LU-SGS algo-
rithm is used to solve a nonlinear system of equations. However, when it is employed to solve a linear problem, it is identical
to the classical LU-SGS algorithm proposed in Jameson et al. [22,23]. The main idea of the linear LU-SGS method is to split the
matrix E in Eq. (24) into a diagonal, a strictly lower and a strictly upper matrix,
E ¼ Dþ L þ U ð28Þ
and solve the linear system with forward and backward Gauss–Seidel sweeps:
Dþ Lð Þ~vhþ1=2 þ U~vh ¼ ~vn; ð29aÞ
Dþ Uð Þ~vhþ1 þ L~vhþ1=2 ¼ ~vn; ð29bÞ
where h ¼ 0;1;2;3; . . . is the actual SGS sweep index. The first equation, with solution ~vhþ1=2, corresponds to the forward
sweep and the second one, with solution ~vhþ1 represents the backward sweep. Note that ~vh¼0 ¼ ~vn. To derive the amplifica-
tion matrix for the LU-SGS method, the matrix M0 has to be split in the following form:
M0 ¼M0
1;1 þM0

1;2 þM0
2;1 þM0

2;2; ð30Þ
where M0
1;1 and M0

2;2 represent, respectively the contribution to the residual of the first and second cell of the generating pat-
tern to themselves, while M0

1;2 and M0
2;1 represent the cross contributions of both cells of the generating pattern. After substi-

tuting Eq. (30) into Eq. (26), the equation of the amplification matrix for the first forward sweep becomes
~v1=2 � ~vn þ rM0
1;1 ~v1=2 þ rM0

1;2 ~vn þ rM0
2;1 ~v1=2 þ rM0

2;2 ~v1=2 þ rM�1 ~v1=2e�IK B01x cos hþB01y sin hð Þ

þ rMþ1 ~vneþIK B01x cos hþB01y sin hð Þ þ rN�1 ~v1=2e�IK B02x cos hþB02y sin hð Þ þ rNþ1 ~vneþIK B02x cos hþB02y sin hð Þ

¼ 0; ð31Þ
from which the amplification matrix of the first forward sweep (32) is found.
Gf ;1 ¼ Iþ rM0
1;1 þ rM0

2;1 þ rM0
2;2 þ rM�1e�IK B01x cos hþB01y sin hð Þ þ rN�1e�IK B02x cos hþB02y sin hð Þ

h i�1

	 I� rM0
1;2 � rMþ1eþIK B01x cos hþB01y sin hð Þ � rNþ1eþIK B02x cos hþB02y sin hð Þ

h i
: ð32Þ
For the first backward sweep, in accordance with Eq. (29b), we get
~v1 � ~vn þ rM0
1;1 ~v1 þ rM0

1;2 ~v1 þ rM0
2;1 ~v1=2 þ rM0

2;2 ~v1 þ rM�1 ~v1=2e�IK B01x cos hþB01y sin hð Þ

þ rMþ1 ~v1eþIK B01x cos hþB01y sin hð Þ þ rN�1 ~v1=2e�IK B02x cos hþB02y sin hð Þ þ rNþ1 ~v1eþIK B02x cos hþB02y sin hð Þ ¼ 0: ð33Þ
Hence, the amplification matrix of the first SGS sweep is given by
GSGS;1 ¼ Iþ rM0
1;1 þ rM0

1;2 þ rM0
2;2 þ rMþ1eþIK B01x cos hþB01y sin hð Þ þ rNþ1eþIK B02x cos hþB02y sin hð Þ

h i�1

	 I� rGf ;1M0
2;1 � rM�1Gf ;1e�IK B01x cos hþB01y sin hð Þ � rN�1Gf ;1e�IK B02x cos hþB02y sin hð Þ

h i
: ð34Þ
From the amplification matrix GSGS;1, the amplification matrix of hth SGS sweep may be computed using the following
two-step recursive procedure:

� Compute the amplification matrix of the hth forward sweep
Gf ;h ¼ Iþ rM0
1;1 þ rM0

2;1 þ rM0
2;2 þ rM�1e�IK B01x cos hþB01y sin hð Þ þ rN�1e�IK B02x cos hþB02y sin hð Þ

h i�1

	 I� rGSGS;h�1M0
1;2 � rMþ1GSGS;h�1eþIK B01x cos hþB01y sin hð Þ � rNþ1GSGS;h�1eþIK B02x cos hþB02y sin hð Þ

h i
: ð35Þ
� Compute the amplification matrix of the hth SGS sweep
GSGS;h ¼ Iþ rM0
1;1 þ rM0

1;2 þ rM0
2;2 þ rMþ1eþIK B01x cos hþB01y sin hð Þ þ rNþ1eþIK B02x cos hþB02y sin hð Þ

h i�1

	 I� rM0
2;1Gf ;h � rM�1Gf ;he�IK B01x cos hþB01y sin hð Þ � rN�1Gf ;he�IK B02x cos hþB02y sin hð Þ

h i
: ð36Þ
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Let kmðm ¼ 1; . . . ;2NCV Þ be an eigenvalue of the general amplification matrix G ¼ GðK; h;wÞ and k ¼ kðGðK; h;wÞÞ represent
the eigenvalue spectrum of G. Then g ¼ gðK; h;wÞ � max½jkðGÞj� is the amplification factor for a given ðK; h;wÞ. In order for
the scheme to be stable, g 6 1 should be satisfied i.e. kðGÞ lies inside the unit circle of the complex plane (stability boundary)
for all K; h and w. The range of K is one period of the Eq. (26) and it will be marked P in the remainder of this paper. For a fixed
shape of the generating pattern, P is a function of h, i.e. P ¼ PðhÞ. The expression from which P can be computed is obtained by
substituting B01;B

0
2 and h in the exponential terms of Eq. (26) and using the Euler’s formula, which gives a relation between

the trigonometric functions and the complex numbers. Following this reasoning, a trigonometric function f, which has ex-
actly the same period as Eq. (26) is obtained. In general, it is not possible to find a closed formulation for P ¼ PðhÞ. Therefore,
the period P is computed taking the inverse fast Fourier transformation of the function f.

If the scheme is used as a smoother for multigrid, then it must have good damping of high-frequency error components,
i.e. it should cluster the eigenvalues of the amplification matrix corresponding to the high-frequency modes towards the ori-
gin of the complex plane. Therefore, for high-frequency modes g 
 1 for all h and w should be satisfied. In addition, we desire
that the CFL number is sufficiently large to produce significant reduction (if not elimination) of the convergence slow-down
effects that are associated with high-aspect ratio mesh cells. A large CFL number also facilitates the expulsion of error com-
ponents. At the same time the capability for large CFL numbers must not compromise the high-frequency damping proper-
ties of the scheme.

In the following section, the damping properties of the LU-SGS + BE method for the second-order SV scheme will be ana-
lyzed to provide the value of the number of symmetric Gauss–Seidel sweeps for carrying out the numerical tests of Section 8.
However, since the performance of the direct inversion method is better than that of any approximate method, the direct
inversion method is examined as a baseline for comparison with the LU-SGS algorithm.

In the present analysis, an upwind Riemann flux (u ¼ 1 in Eq. (21)) is employed and the direction of the wave propagation
velocity w is set to � p

6 ðax > 0; ay < 0Þ. A negative y velocity component is chosen to avoid having the sweep directions of the
Fig. 3. Effect of the SGS sweeps on the eigenvalue spectrum of the LU-SGS + BE scheme applied to 2D linear convection equation. SV2 scheme, upwind
Riemann flux, w 2 ½0;2p�; h 2 ½0;2p�; K 2 ½0; PðhÞ�; AR ¼ 1, CFL = 1. (a) 1 SGS sweep, (b) 2 SGS sweeps, (c) 3 SGS sweeps, and (d) direct + BE method.



LU-SGS method aligned with the flow direction. In fact, if the flow direction corresponds to the sweep directions, the LU-SGS
becomes a direct solver, e.g. in case of a purely upwind scheme. The smoothing properties of the direct method and the LU-
SGS + BE method are shown for three values of the solution orientation h, i.e � p

6 ;0 and p
3 and two meshes with respectively

an aspect ratio of one and hundred. The latter mesh accounts for the effects of the geometrical stiffness imposed by the Na-
vier–Stokes grids where high-aspect ratios occur near walls.
7. Second-order SV scheme

First, consider a mesh built from equilateral triangles. Such a mesh is obtained with the following choice for the dimen-
sionless vectors B01 and B02,
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and leads to a mesh with isotropic cells, i.e. the aspect ratio, AR ¼ jB
0
1 j
jB02 j
¼ 1. Fig. 3 shows the eigenvalue spectrum of the ampli-

fication matrix of the LU-SGS + BE method and the direct + BE method on the equilateral triangle mesh, for CFL = 1, varying
the direction w of the wave propagation velocity a, the wave number K, and the solution orientation defined by the angle h.
For the LU-SGS + BE one, two and three SGS sweeps are used. It is seen that the SV2 scheme with the LU-SGS + BE method is
stable for all K; h and w. Fig. 3 shows that with an increasing number of SGS sweeps, the eigenvalue spectrum of the LU-
SGS + BE method approaches that of the direct + BE method.

Our aim is to plot the amplification factor g as a function of the wave number K. Hence, in the following paragraphs we are
going to present first the analysis of the smoothing properties done for the direct + BE solver and to describe the methodol-
ogy used to plot correctly the amplification factor g. First, consider a solution with an orientation h ¼ w ¼ � p

6. For this choice,
Eq. (26 ) is periodic in K with a period equal to 4ffiffi

3
p

p. However, Eq. (26) has NCV eigenvalues for each K and, as was pointed out
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in [15,31], each eigenvalues corresponds to a wave number K þ z 4ffiffi
3
p p, with z an integer number. Consequently, to get the

correct damping properties of the solver, each mode should be shifted by a multiple of 4ffiffi
3
p p along the wave number axis.

The actual wave number K þ z 4ffiffi
3
p p to which an eigenvalue kmðm ¼ 1; . . . ;2NCV ) corresponds has to be determined by exam-

ining the spatial shape of the eigenmode, defined by the eigenvector v̂m
Fig. 6. Direct inversion method applied to 2D convection equation. SV2 method, upwind Riemann flux, h ¼ w ¼ � p
6 ; AR ¼ 1, CFL = 1. Real part, imaginary

part and absolute value of the amplitude of the amplification matrix.

Fig. 5. Direct inversion method applied to 2D convection equation. SV2 method, upwind Riemann flux, h ¼ w ¼ � p
6 ; AR ¼ 1, CFL = 1. Real and imaginary

part of the eigenvalue spectrum of the amplification matrix.





Fig. 9.
Rieman
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Gexact � 1� IKaDt � K2a2Dt2

2
þ oðK3Dt3Þ: ð40Þ
In the first two plots of Fig. 6, the real and the imaginary part of the amplification factor of the direct solver for KDt close
to zero are plotted along with their counterparts in Eq. (40). It is seen that the direct + BE method follow closely the theo-
retical results for KDt 
 1. In the last plot of Fig. 6 the amplification factor g of the direct + BE inversion method is plotted as
a function of the wave number K 2 ½0; 3

2 P�, for h ¼ w ¼ � p
6. It is seen that the direct + BE solver has good damping properties

for high-frequency solution components.
The procedure described above may be applied to the amplification matrix of the LU-SGS + BE scheme. In Fig. 7 the eigen-

value spectrum kðGDÞ is plotted as a function of the wave number K, for w ¼ h ¼ � p
6 with an upwind Riemann flux, for CFL = 1

and one SGS sweep. In this figure, three curves marked with the plus sign (+), the square ð�Þ and the circle ð�Þ are shown (cf.
Fig. 5). Shifting these curves in the appropriate, way the amplification factor curve of Fig. 8 for K 2 ½0; 3

2 P� is found. In the
same plot, the amplification factor for two and three sweeps is also shown. It is seen that the discontinuity, obtained with
one SGS sweep, disappears when two SGS sweeps are employed. For three SGS sweeps the amplification factor of the LU-
SGS + BE method is indistinguishable from that of the direct + BE inversion method. This explains why for the analysis of
a mesh with AR ¼ 1 and CFL = 1, a maximum number of three SGS sweeps was used.

Consider the same equilateral triangle mesh but with a CFL number of 106. The eigenvalue spectrum of the amplification
matrix of the direct + BE and the LU-SGS + BE methods for this case is plotted in Fig. 9, varying again the direction w of wave
propagation velocity a, the wave number K and the angle h. For the LU-SGS + BE method, one, ten and one hundred SGS
sweeps are employed. It is seen that for CFL = 106, the LU-SGS + BE method is still stable for all K; h and w. However, using
Effect of the SGS sweeps on the eigenvalue spectrum of the LU-SGS + BE scheme applied to 2D linear convection equation. SV2 scheme, upwind
n flux, w 2 ½0;2p�; h 2 ½0;2p�; K 2 ½0; PðhÞ�; AR ¼ 1, CFL ¼ 106. (a) 1 SGS sweep, (b) 10 SGS sweeps, (c) 100 SGS sweeps, and (d) direct + BE method.
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too few SGS sweeps (1–3 sweeps), the scheme exhibits poor damping behavior for some values of the angle h and a range of
frequencies K. In Figs. 10–12 the amplification factor for h ¼ � p

6 ; h ¼ 0 and h ¼ p
3 are shown for CFL = 106. Fig. 11 shows that

for h ¼ 0 the amplification factor exhibits a discontinuity for a wave number equal to half the period of Eq. (26), i.e. for
K ¼ 2p. In fact, the amplification factor starts from one for K ¼ 0, and it decreases very fast to zero for K > 0. However, when
K ¼ 2p, it jumps to a value which is again close to (0.9–1) and then it rapidly decreases again for high-wave numbers. Notice,
that the discontinuity occurs at a low-frequency wave number i.e. at a frequency which is 1

6 of the whole wave number cov-
ered by the spatial scheme. By increasing the number of SGS sweeps, the amplitude of the discontinuity decreases but for one
hundred SGS sweeps the curve is still discontinuous and it differs from that of the direct + BE method. Figs. 10 and 12 show
that for h ¼ � p

6 and h ¼ p
3 the high-frequency error components are well damped and they do not exhibit jumps as for h ¼ 0.

Moreover, for these two values of h, the amplification factor also shows a discontinuity which disappears when five or more
SGS sweeps are employed.

Now, to study the damping properties of the LU-SGS + BE scheme when the geometrical stiffness imposed by the Navier–
Stokes grids occur near walls, consider a mesh obtained for the following choice of the dimensionless vectors B01 and B02,
Fig. 10
Rieman

Fig. 11
Rieman
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0
1

100

 !
: ð41Þ
This mesh has anisotropic cells with AR ¼ 100. The eigenvalue spectrum of the amplification matrix of the LU-SGS+BE and
the direct + BE methods is plotted in Fig. 13 for CFL = 106, varying again the direction w of wave propagation velocity a , the
wave number K and angle h. One, ten and hundred SGS sweeps are employed. The plots show that the LU-SGS + BE method is
still stable for all K; h and w but when only a few SGS sweeps are employed (1–3 sweeps), it exhibits a poor damping behavior
for some values of the angle h and a range of frequencies K.
. Effect of the SGS sweeps on the amplification factor of the LU-SGS + BE scheme applied to 2D linear convection equation. SV2 scheme, upwind
n flux, h ¼ w ¼ � p

6 ; K 2 ½0; 3
2 P�; AR ¼ 1, CFL ¼ 106.

. Effect of the SGS sweeps on the amplification factor of the LU-SGS + BE scheme applied to 2D linear convection equation. SV2 scheme, upwind
n flux, w ¼ � p

6 ; h ¼ 0; K 2 ½0; P�; AR ¼ 1, CFL ¼ 106.



Fig. 12. Effect of the SGS sweeps on the amplification factor of the LU-SGS + BE scheme applied to 2D linear convection equation. SV2 scheme, upwind
Riemann flux, w ¼ � p

6 ; h ¼ p
3 ; K 2 ½0; 1

2 P�; AR ¼ 1, CFL = 106.

Fig. 13. Effect of the SGS sweeps on the eigenvalue spectrum of the LU-SGS + BE scheme applied to 2D linear convection equation. SV2 scheme, upwind
Riemann flux, w 2 ½0;2p�; h 2 ½0;2p�; K 2 ½0; PðhÞ�; AR ¼ 100; CFL ¼ 106. (a) 1 SGS sweep, (b) 10 SGS sweeps, (c) 100 SGS sweeps, and (d) direct + BE
method.

M. Parsani et al. / Journal of Computational Physics 229 (2010) 828–850 841



842 M. Parsani et al. / Journal of Computational Physics 229 (2010) 828–850
As for a mesh with AR ¼ 1, in Figs. 14–16 the amplification factor of both direct and LU-SGS methods are plotted as a func-
tion of the wave number K, for h ¼ � p

6 ; h ¼ 0 and h ¼ p
3. In these cases,the period P of the Eq. (26) for the three values of the

solution orientation is respectively, 2p
sinp

6
;2p and 2p

sinp
3
.

It is seen that, when few SGS sweeps (3–5) are employed, the damping properties of the LU-SGS + BE solver for h ¼ � p
6 and

h ¼ p
3 are similar to that of the direct + BE method, Figs. 14 and 16. For h ¼ 0 (Fig. 15) the behavior is different. In fact, the low-

frequency error components are not damped at all and the amplification factor for a wave number range ½0;pÞ is close to one.
However, for K > p it jumps to a value close to zero and the high-frequency error components are still well damped.

7.1. Remarks

The analysis has demonstrated that the LU-SGS + BE scheme is always stable for any choice of the convective velocity
direction w and the solution orientation h for the second-order spectral volume scheme. Furthermore, the analysis has shown
that the smoothing properties of the implicit solver depend strongly on the orientation of the solution and on the CFL num-
ber. It is seen that increasing the number of the SGS sweeps the damping behavior of the lower–upper symmetric Gauss–
Seidel algorithm with the backward Euler scheme gets closer to the damping properties of a direct solver + BE scheme.

The analysis was performed for a CFL of 106 and on two meshes with an aspect ratio of one and hundred, respectively. The
latter mesh allows to take into account the effects of the geometrical stiffness imposed by the Navier–Stokes grids where
high-aspect ratios occur near walls. It was shown that for both meshes 5 SGS sweeps are in general sufficient to get a good
damping of the high-frequency error components. Moreover, it has been shown that the amplification factor may have a dis-
continuity for a certain wave number. This depends on the direction of the harmonic wave solution and the number of SGS
sweeps. Nevertheless, the high-frequency error components are always well damped. Besides, for a specific direction of the
Fig. 14. Effect of the SGS sweeps on the amplification factor of the LU-SGS + BE scheme applied to 2D linear convection equation. SV2 scheme, upwind
Riemann flux, h ¼ w ¼ � p

6, K 2 ½0; 100�; AR ¼ 100, CFL ¼ 106.

Fig. 15. Effect of the SGS sweeps on the amplification factor of the LU-SGS + BE scheme applied to 2D linear convection equation. SV2 scheme, upwind
Riemann flux, w ¼ � p

6 ; h ¼ 0; K 2 ½0; P�; AR ¼ 100:CFL ¼ 106.



Fig. 16. Effect of the SGS sweeps on the amplification factor of the LU-SGS + BE scheme applied to 2D linear convection equation. SV2 scheme, upwind
Riemann flux, w ¼ � p

6 ; h ¼ p
3 ; K 2 ½0; 100�; AR ¼ 100; CFL ¼ 106.
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harmonic wave solution ðh ¼ 0Þ of the 2D linear convection equation, the implicit iterative scheme shows an amplification
factor which is close to 1 for a wave number range equal to half of the period of Eq. (26). For wave numbers higher than half
of the period the amplification factor is close to zero.
8. Numerical results

The LU-SGS + BE scheme was used to compute the solution of a steady, laminar flow over a cylinder and an airfoil. The
solution was calculated with the SV2 method and the p-multigrid algorithm with two-level V-cycles. The order was re-
stricted to 2 because of the curved boundaries. A first-order interpolation was used for the boundary shape, but high-order
schemes would require a more accurate interpolation, especially on the relatively coarse grids that are being used in com-
bination with high-order polynomial representations of the solution [13].

The results are compared with those obtained with optimized E-RK smoothers presented in Section 4 and for the
NACA0012 test case also with those obtained with the code of Swanson et al. [21].

The linear system (17) is solved with multiple cell-wise symmetric forward and backward sweeps with a prescribed tol-
erance of 10�6 on the change of the L2 norm of the solution variation gDWðkþ1Þ

c and/or a maximum number of 6 SGS sweeps.
For all the calculations, a maximum CFL number of 106 is employed. The former choices allow strong damping of the high-
frequency error components and gives good properties in terms of CPU-time and convergence rate for the steady state com-
putations. From the Von Neumann analysis of the 2D linear advection equation it was found that a maximum number of 5–6
SGS sweeps are in general sufficient to get good damping of the high-frequency error components for a CFL number of 106.
For the present test cases, if a CFL number larger than 106 is used, the convergence rate and the CPU-time of the LU-SGS + BE
scheme do not improve. Therefore, increasing the CFL number above 106 does not yield any speed-up of the implicit LU-
SGS + BE scheme.

Unless indicated otherwise, the calculations were started with the lower order discretization (full p-multigrid algorithm).
The residuals are normalized by the corresponding residuals of the first iteration. The grids were created using the Gmsh
software [33] which allows a second-order ðp ¼ 2Þ polynomial approximation of the curved boundary elements. Although,
the cells’ numbering potentially has an important influence on the convergence of the scheme due to the nature of the im-
plicit LU-SGS (see [32]), in the present work, the order of the cells in the cell index list is not reordered with any criteria or
algorithm and it corresponds to the Gmsh numbering. In the Gmsh software, the element numbers are assigned by looping
over geometrical entities of increasing dimensions (points, then curves, then surfaces, then volumes) and numbering the
cells ‘‘as they come” in each entity [33]. The calculations were performed on a Linux workstation with an Intel T2500 Core
Duo (2.0 GHz) processor.
8.1. Laminar flow over a cylinder

The compressible laminar flow simulation over a cylinder was conducted at free-stream Mach number of 0.15, Rey-
nolds number based on the cylinder diameter of 40 and Prandtl number of 0.72. First, a grid with 3744 triangular cells
with a maximum AR ðARmaxÞ of 2 was used. In the first part of the Table 2 we list the CFL numbers for the E-RK and
the LU-SGS + BE schemes. For the E-RK scheme two values for the CFL number are indicated; the first one is the convective
CFL number rconv while the second one is the viscous CFL number rvisc . From these two CFL values two local time-steps
are computed:



Fig. 17
3744 ce

Table 2
CFL number for the two-level V-cycles for the subsonic laminar cylinder flow. Unstructured grids with 3744 cells, ARmax ¼ 2, and 5440 cells, ARmax ¼ 162.

Scheme ARmax ¼ 2 ARmax ¼ 162

SV1 SV2 SV1 SV2

Opt. explicit R–K 7,0.5 4,0.3 1.5,0.01 0.35,0.005
LU-SGS + BE 10n 10n 10n 10n
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Dtconv ¼
rconvVPNfaces

j¼1 aj � Sj þ cjjSjj
ð42Þ
and
Dtvisc ¼
rviscV2PNfaces

j¼1 mjSjj2
; ð43Þ
where Nfaces; Sj; aj; cj and m, represent respectively, the number of faces of the spectral volume SV, the jth oriented surface,
the local convective velocity, the local speed of sound and the kinematic viscosity. To compute the cell’s solution at the next
time-level, the minimum value between Dtconv and Dtvisc is selected.

For the LU-SGS + BE scheme both maximum convective and viscous CFL numbers were set to 106 for each p-multigrid
level. In Fig. 17, the convergence histories of the continuity equation of the E-RK scheme and LU-SGS + BE scheme are com-
pared. The computations were stopped when the L2 norm of the residuals was reduced 12 orders of magnitude. In Table 3,
the number of V-cycles for each multigrid level, the total number of V-cycles and the total CPU-time are listed. For this test
case, once the finest grid solution is reached, i.e. the VMG2 cycle is used and the SV2 scheme solution is computed, the coarse
grid solution takes 69% of the total CPU-time listed in Table 3. The superscript � indicates that the residuals are not yet con-
verged. In fact, after 10;000� V-cycles the E-RK scheme reduced the L2 norm of the residuals by 9 orders of magnitude. From
this table it is seen that the LU-SGS + BE scheme is more than one order of magnitude faster than the E-RK scheme in terms of
CPU-time.

In order to study the convergence properties of the LU-SGS + BE solver, this test case was also computed on a grid with
5440 triangular cells with ARmax ¼ 162. Table 2 shows also the CFL number used for this new mesh. Note that the power law
of the CFL number and its maximum value for LU-SGS + BE scheme is exactly the same as used for the mesh with ARmax ¼ 2.

Fig. 18 shows the convergence histories of the continuity equation of the E-RK and LU-SGS + BE schemes for this mesh. In
Table 3, the number of V-cycles for each multigrid level, the total number of V-cycles and the total CPU-time are listed. It is
observed that whereas the convergence of the E-RK scheme is significantly slowed down because of the increased ARmax, this
is not the case for the LU-SGS + BE scheme. The required number of V-cycles to reduce the residual 12 orders of magnitude
(495 V-cycles) is almost identical as for the ARmax ¼ 2 case (479 V-cycles). In Table 4 the drag coefficients cd for both simu-
lations are summarized. Good agreement with the experimental data [34] is found.

To conclude this study on the cylinder, the effect of the low Mach number on the convergence rate of the LU-SGS + BE
solver is presented. In Fig. 19, the convergence histories of the continuity equation of the LU-SGS + BE scheme for both
meshes ðARmax ¼ 2 and ARmax ¼ 162Þ are shown for three values of the Mach number: 0.15, 0.05, 0.005. The Reynolds and
. Convergence histories of E-RK scheme and LU-SGS + BE scheme applied to subsonic laminar cylinder flow. SV2 scheme, unstructured grid with
lls, ARmax ¼ 2.



Fig. 18. Convergence histories of the E-RK scheme and the LU-SGS + BE scheme applied to subsonic laminar cylinder flow. SV2 scheme, unstructured grid
with 5440 cells, ARmax ¼ 162.

Table 4
Drag coefficient for subsonic laminar cylinder flow computed with the LU-SGS + BE scheme.

Experimental data [34] LU-SGS + BE ARmax ¼ 2 LU-SGS + BE ARmax ¼ 162

cd 1.536 1.526 1.531

Table 3
Number of V-cycles and total CPU-time of E-RK scheme and LU-SGS + BE scheme applied to subsonic laminar cylinder flow. SV2 scheme. Unstructured grids
with 3744 cells, ARmax ¼ 2, and 5440 cells, ARmax ¼ 162.

Scheme VMG1 VMG2 Total VMG Total CPU-time (s)

ARmax ¼ 2 Opt. explicit R–K 500 9500� 10; 000� 145; 094�

LU-SGS + BE 78 401 479 17,576

ARmax ¼ 162 Opt. explicit R–K 500 9500� 10; 000� 211;859�

LU-SGS + BE 77 418 495 24,861
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Prandtl numbers were again fixed to 40 and 0.72, respectively. The power law of the CFL number and its maximum value for
LU-SGS + BE scheme is the same as used for the mesh with ARmax ¼ 2 and ARmax ¼ 162. The computations were stopped when
the L2 norm of the residuals was reduced 12 orders of magnitude. In Table 5 the number of V-cycles for each multigrid level
and the total number of V-cycles for the three values of the Mach number are listed. In these tables, two values for the total
number of V-cycles are indicated. The first one is the total number to reduce the L2 norm of the residuals 10 orders of mag-
nitude, while the second one is the total number for 12 orders of magnitude. It is seen that with both meshes, the required
number of V-cycles to transfer the solution from a first-order polynomial approximation to a second-order polynomial
approximation (VMG1) decreases when the Mach number is reduced. The switch to a finer level is made when the L2 norm
of the coarse level residuals is smaller gswitch times the L2 norm of the fine level residual. In the present work the parameter is
gswitch is set to 0.001.

Furthermore, Fig. 19 shows that the convergence rate of the LU-SGS + BE method for a residual norm higher than 10�11 is
not slowed by a decrease of the Mach number. On the contrary, for M = 0.005, the required number of V-cycles to reduce the
residual norm 10 orders of magnitude is smaller than the computation with M = 0.15. The low Mach number, combined with
a mesh with high-aspect ratio, slightly affected the convergence rate of the LU-SGS + BE solver. For M = 0.005 and the mesh
with ARmax ¼ 162, the LU-SGS + BE scheme took 34 V-cycles more than that for the mesh with ARmax ¼ 2. For a residual norm
smaller than 10�11 the convergence rate of the LU-SGS + BE solver slows. This behavior is caused by roundoff errors which
are more influential at low Mach number.

8.2. Laminar flow around a NACA0012 airfoil

The compressible laminar flow simulation over a NACA0012 airfoil was conducted at free-stream Mach number of 0.5,
Reynolds number based on the airfoil chord of 5000 and Prandtl number of 0.72. A grid with 6878 triangular cells with



ARmax ¼ 2:5 was used and an incoming flow with zero angle of attack was imposed. In Table 6 we list the CFL numbers for
both E-RK smoother and the LU-SGS + BE.

The maximum CFL number for the implicit scheme was set to 106. In Fig. 20, the convergence histories of the continuity
equation residual using the E-RK and LU-SGS + BE schemes are compared. We stopped the computations when the L2 norm
of residuals was reduced by 10 orders of magnitude. In Table 7, the number of V-cycles for each multigrid level, the total
number of V-cycles and the total CPU-time are listed. This table shows that the LU-SGS + BE scheme is approximately 6 times
faster than the E-RK scheme in terms of CPU-time. For this test case, once the finest grid solution is reached, i.e. the VMG2
cycle is used and the SV2 scheme solution is computed, the coarse grid solution takes 67% of the total CPU-time listed in
Table 7.

In Fig. 21 the distribution of the skin friction coefficient cf and the pressure coefficient cp on the airfoil surface are plotted.
The figure shows good agreement with the experimental data [35].

To conclude this study on the NACA0012 airfoil, a comparison between the convergence behavior of the LU-SGS + BE
scheme and the new RK3/Implicit Residual scheme, proposed in [21], is presented. The latter scheme is combined with a
classical second order finite volume scheme. In [21], the convergence of a three-stage E-RK scheme with h-multigrid is accel-
erated by preconditioning with a fully implicit operator, whose inverse is approximated with three point-wise SGS iterations.
The aim is to compare the convergence behavior of three codes, i.e. only the number of multigrid cycles to reduce the L2

norm of the residuals 12 orders of magnitude. It should be noted that a comparison of the efficiency is difficult as both sim-



Fig. 20. Convergence histories of the E-RK scheme and the LU-SGS + BE scheme applied to subsonic laminar flow over a NACA0012 airfoil at zero angle of
attack. SV2 scheme, unstructured grid with 6878 cells, ARmax ¼ 2:5.

Table 7
Number of V-cycles and total CPU-time of the E-RK scheme and the LU-SGS + BE scheme applied to subsonic laminar flow over a NACA0012 airfoil at zero angle
of attack. SV2 scheme, unstructured grid with 6878 cells, ARmax ¼ 2:5.

Scheme VMG1 VMG2 Total VMG Total CPU-time (s)

Opt. E-RK 35 606 641 16,589
LU-SGS + BE 13 49 62 2784
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ulations have a different number of degree of freedom (DOF): the SV2 scheme for two-dimensional problems has six times
the number of DOF of a classical FV scheme [7–13]. For that reason and because the simulations were done on different com-
puters, no CPU-time comparisons will be shown. The same conditions as in the previous computation are used except for the
angle of attack which is set to 2.5�.

The RK3/implicit scheme uses a structured quadrilateral mesh while the LU-SGS + BE scheme uses a triangular mesh con-
structed from the quadrilateral mesh. A mesh with 16384 quadrilateral cells or 32768 triangular cells and a ARmax ¼ 136 was
used. In the calculation of the RK3/Implicit Residual the CFL number was 16 during the first 8 multigrid cycles and then, it
was increased to 103. For the LU-SGS + BE scheme the CFL number was set to 106 during the entire calculation. In Fig. 22, the
convergence histories of the continuity equation of the RK5 Standard code, the RK3/Implicit Residual and the LU-SGS + BE
scheme are compared. In Table 8 the total number of V-cycles are listed. We see that LU-SGS + BE requires 19 cycles more
than the RK3/Implicit Residual code and nearly one order of magnitude less than the RK5 Standard code. In terms of mul-
tigrid cycles, the RK3/Implicit Residual scheme is more efficient than the LU-SGS + BE scheme. However, the work per
DOF of the RK3/Implicit Residual scheme is approximately twice that of the LU-SGS + BE scheme. The RK3/Implicit Residual
scheme employs 12 point-wise SGS (3 SGS sweeps plus a residual calculation times three RK stages) per DOF, while the LU-
SGS + BE scheme requires only 6 SGS sweeps per DOF. However, the LU-SGS + BE scheme requires the computation of the
Fig. 21. Distribution of the skin friction coefficient (a) and pressure coefficient (b) on the NACA0012 airfoil surface computed with the implicit the LU-
SGS + BE scheme. SV2 scheme, unstructured grid with 6878 cells, ARmax ¼ 2:5.



Fig. 22. Convergence histories of the RK3/Implicit residual scheme and the LU-SGS + BE scheme applied to subsonic laminar flow over a NACA0012 airfoil at
an angle of attack ¼ 2:5� . 2nd-order FV scheme/SV2 scheme, structured quadrilateral/unstructured triangular grid, ARmax ¼ 136.

Table 8
Number of V-cycles of the RK5 Standard scheme, the RK3/Implicit Residual scheme and the LU-SGS + BE scheme applied to subsonic laminar flow over a
NACA0012 airfoil at an angle of attack 2.5�. 2nd-order FV/SV scheme, structured quadrilateral/unstructured triangular grid, ARmax ¼ 136.

Scheme Total number of cycles

RK5 Standard 773
RK3/Implicit Residual 58
LU-SGS + BE 77

Table 9
Drag coefficient for subsonic NACA0012 flow at an angle of attack = 2.5� computed with RK5 Standard scheme, RK3/Implicit Residual scheme and the LU-
SGS + BE scheme.

Scheme cd cl

RK5 Standard 0.0568425 0.0331927
RK3/Implicit Residual 0.0568523 0.0333319
LU-SGS + BE 0.0562196 0.0331650
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LHS of Eq. (17), which is time-consuming since its size is quite large. The total number of diagonal block matrix elements that
have to be stored for a tetrahedral mesh with NSV cells with polynomial degree p increases with p4 in 2D and p6 in 3D. Finally,
in Table 9 the drag coefficient ðcdÞ and the lift coefficient ðclÞ for the three simulations are summarized. The table shows good
agreement between the results of the three codes.
9. Conclusions

The stability and the smoothing properties of the implicit lower–upper symmetric Gauss–Seidel algorithm with the back-
ward Euler scheme, in combination with the 2D spectral volume schemes and an upwind Riemann flux have been studied,
based on the Von Neumann analysis of the 2D linear convection equation. The Von Neumann analysis has been performed
for a CFL number of 106 and on two meshes with low- and high-aspect ratio to show the effects of the number of symmetric
Gauss–Seidel sweeps on the amplification factor. The analysis has demonstrated that the implicit lower–upper symmetric
Gauss–Seidel algorithm with the backward Euler scheme is always stable for any choice of the convective velocity direction
and the solution orientation for second-order spectral volume schemes. Furthermore, the analysis has shown that the
smoothing properties of the implicit solver depend strongly on the orientation of the solution and on the CFL number.

Several test cases have been used to study the damping behavior of the implicit iterative scheme. It is seen that increasing
the number of the SGS sweeps the damping behavior of the lower–upper symmetric Gauss–Seidel algorithm with the back-
ward Euler scheme gets closer to the damping properties of a direct solver with backward Euler scheme. Moreover, it has
been shown that for the 2D linear convection equation, 5 SGS sweeps are enough to get good damping of the high-frequency
error components for a CFL number of 106.

We see that the amplification factor may have a discontinuity for a certain wave number. This depends on the direction of
the harmonic wave solution and the number of SGS sweeps employed. Nevertheless, the high-frequency error components
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are always well damped. Besides, for a specific direction of the harmonic wave solution ðh ¼ 0) of the 2D linear convection
equation, the implicit iterative scheme shows an amplification factor which is close to 1 for a wave number range equal to
half of the period of the numerical dispersion relation. For wave numbers higher than half the period the amplification factor
is close to 0.

The performance of the implicit nonlinear LU-SGS scheme has been evaluated by solving the 2D, laminar Navier–Stokes
equations for the flow over a cylinder and a NACA0012 airfoil. In all test cases a CFL number of 106 and 6 SGS sweeps have
been used and the effect of the mesh aspect ratio on the convergence rate has been investigated. From the Von Neumann
analysis for the 2D linear convection equation it was found that a maximum number of 5 SGS sweeps are in general sufficient
to get good damping of the high-frequency error components for a CFL number of 106. The numerical results show that the
convergence behavior of the implicit scheme is not greatly affected by the cell aspect ratio of the mesh. Furthermore, for the
flow over a cylinder, the effect of the Mach number on the convergence rate of the implicit lower–upper symmetric Gauss–
Seidel algorithm with the backward Euler scheme has been studied. The analysis has demonstrated that the implicit solver is
slightly affected by the low Mach number when meshes with isotropic cells are employed. For meshes with anisotropic cells
and high-aspect ratio, the effects of the low Mach number are clearly visible.

With the implicit scheme and the p-multigrid strategy the computational time can be reduced by a factor of up to 5–10
for laminar flows as compared to a well tuned E-RK scheme. The convergence rate of the implicit LU-SGS scheme on the
NACA0012 airfoil test case is comparable with that of a very efficient reference code [21]. In addition, this implicit LU-
SGS algorithm requires less memory than classical implicit approaches because only the block matrices on the diagonal
of the system matrix have to be stored.
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